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CASE METHOD EMPLOYED FOR SOLVING THE PROBLEM OF THERMAL CREEP

OF A RAREFIED GAS ALONG A SOLID CYLINDRICAL SURFACE

UDC 533.72V. N. Popov

An analytical solution of a half-space boundary-value problem is constructed for an inhomogeneous
kinetic Boltzmann equation with the collision operator in the form of an operator of an ellipsoidal
statistical model in the problem on thermal creep of a rarefied gas along a solid cylindrical surface.
Corrections to the thermal creep coefficient are obtained for the cases of longitudinal and transverse
flow past a straight circular cylinder in the approximation linear with respect to the Knudsen number,
allowing for the interfacial curvature. The results are compared with available data.

Introduction. At present, it is quite common to apply the method of elementary solutions (Case method)
[1] to homogeneous model kinetic equations. However, to the best of our knowledge, only in a few cases has this
method been applied to solve inhomogeneous kinetic equations. Thus, from the solution of an inhomogeneous
linearized kinetic Boltzmann equation with a collision operator in the form of the BGK (Bhatnagar–Gross–Krook)
model operator in the Knudsen layer, Akimov and Gaidukov [2] determined the creep velocity of a rarefied gas along
a solid spherical surface. At the same time, in the approximation linear in terms of the Knudsen number, accurate
analytic expressions in a closed form were obtained for the corrections to the coefficients of thermal and isothermal
creep with allowance for interfacial curvature. No numerical analysis has been performed, though, because the
resultant expressions were rather complex. In [3], the solution of the problem on second-order thermal creep was
constructed using the kinetic Boltzmann equation with the collision operator in the form of the BGK operator. For
the same reason as above, no numerical analysis of the results obtained was carried out. In [4], the Case method
was applied to the inhomogeneous linearized kinetic Boltzmann equation with the collision operator in the form of
an operator of the ellipsoid statistical model in the problem of rarefied gas creep along a solid spherical surface.
The value of βR, a coefficient allowing for the thermal creep coefficient versus the interfacial curvature radius, was
found by the numerical analysis of the obtained analytical expressions.

In this study, the problem of rarefied gas thermal creep along the surface of a straight circular cylinder
is solved by the Case method. Unlike [4], some integrals entering into the expression for the coefficient βR are
analytically calculated, and the final result is expressed in terms of Loyalka integrals [5]. The results obtained are
required to calculate the thermophoresis rate of cylindrical aerosol particles [6].

1. Cross-Flow Past a Cylinder. Derivation of Governing Equations. Let us consider a rarefied
gas flow inhomogeneous in temperature past a solid cylindrical surface with small deviations from the equilibrium
state. The gas flow will be described by the Boltzmann equation with a linearized collision operator in the form
of the operator of the ellipsoidal statistical model [7, 8]. In a cylindrical system of coordinates where the Oz axis
coincides with the cylinder axis, the equation for the considered model is written in the following form:

Cρ
∂f

∂ρ
+ f(ρ, ϕ,C) +

1
ρ

(
C2
ϕ

∂f

∂Cρ
− CρCϕ

∂f

∂Cϕ
+ Cϕ

∂f

∂ϕ

)
= f0(C)

(
1 + β−3/2

∫ ∫ ∫
K(C,C ′)f(ρ, ϕ,C ′) dC ′

)
.

Here f(ρ, ϕ,C) is the distribution function of gas molecules in coordinates and velocities, f0(C)
= (β/π)3/2 exp (−C2) is an absolute Maxwellian, β = m/(2kBT ), ρ(3µg/(2p))β−1/2 is the distance counted from
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the cylinder axis, ρ is a dimensionless coordinate, β−1/2Ci are the components of the gas molecule eigenvelocity,
µg is the dynamic viscosity of the gas, p is the static pressure, kB is the Boltzmann constant, m is the mass of gas
particles, and K(C,C ′) = 1 + 2CC ′ + 2(C2 − 3/2)(C ′2 − 3/2)/3− 2CiCj(C ′iC

′
j − δijC ′2/3).

The condition of diffuse reflection is assumed as the boundary condition on the wall.
Let us take that the temperature gradient at a distance from the cylindrical surface is perpendicular to its

axis. Let us linearize the distribution function that describes the gas state in a locally equilibrium distribution
function in the Chapman–Enskog approximation [9], i.e., let us represent it as

f(ρ, ϕ,C) = f0(C)[1 + Y (ρ, ϕ,C)].

Let us expand the function Y (ρ, ϕ,C), allowing for the deviations of velocity and coordinate distributions
of gas molecules in the Knudsen layer from the distribution function in the gas volume as a power series in a small
parameter 1/R:

Y (ρ, ϕ,C) = Y (1)(ρ, ϕ,C) +R−1Y (2)(ρ, ϕ,C) + . . . . (1.1)

By this expansion, we obtain a system of one-dimensional integrodifferential equations

Cρ
∂Y (1)

∂ρ
+ Y (1)(ρ, ϕ,C) = π−3/2

∫
exp (−C ′2)K(C,C ′)Y (1)(ρ, ϕ,C ′) dC ′; (1.2)

Cρ
∂Y (2)

∂ρ
+ Y (2)(ρ, ϕ,C) = π−3/2

∫
exp (−C ′2)K(C,C ′)Y (2)(ρ, ϕ,C ′) dC ′

− C2
ϕ

∂Y (1)

∂Cρ
+ CρCϕ

∂Y (1)

∂Cϕ
− Cϕ

∂Y (1)

∂ϕ
(1.3)

with the boundary conditions

Y (1)(R,ϕ,C) = −2CϕU (1)
ϕ

∣∣∣
S

+ Cϕ(C2 − 5/2)k, Cρ > 0,

Y (2)(R,ϕ,C) = −2CϕU (2)
ϕ

∣∣∣
S
, Cρ > 0,

Y (1)(∞, ϕ,C) = 0, Y (2)(∞, ϕ,C) = 0,

from which we find an expression for the two first terms of expansion (1.1). Here 3Rµgβ
−1/2/(2p) is the cylinder

radius, S is the cylindrical surface, k =
1
TS

∂T

R∂ϕ

∣∣∣
S

, β−1/2Ui are the components of the mass-averaged velocity of

the flow. Equation (1.2) describes the processes on the boundary of a solid flat surface, and equation (1.3) makes
it possible to allow for the influence of the interfacial curvature.

The solution of (1.2) is sought as the expansion in terms of two orthogonal polynomials

Y (1)(ρ, ϕ,C) = CϕY
(1)
1 (ρ, ϕ,Cρ) + Cϕ(C2

ϕ + C2
z − 2)Y (1)

2 (ρ, ϕ,Cρ). (1.4)

Note that orthogonality in (1.4) is understood as the scalar product

(f, g) =

+∞∫
−∞

f(ρ, ϕ,C)g(ρ, ϕ,C) exp (−C2) d3C.

The solution of (1.3) is sought in the following form:

Y (2)(ρ, ϕ,C) = CϕY
(2)
1 (ρ, ϕ,Cρ). (1.5)

Let us denote µ = Cρ. Then, by substituting expansions (1.4) and (1.5) into (1.3), multiplying the resultant
relation by Cϕ exp (−C2

ϕ−C2
z ), and integrating over Cϕ and Cz from −∞ to +∞, we obtain the following equation

for the function Y
(2)
1 (ρ, ϕ, µ):
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µ
∂Y

(2)
1

∂ρ
+ Y

(2)
1 (ρ, ϕ, µ) =

1√
π

∞∫
−∞

Y
(2)
1 (ρ, ϕ, µ′) exp (−µ′2) dµ′

− µ√
π

∞∫
−∞

µ′Y
(2)
1 (ρ, ϕ, µ′) exp (−µ′2) dµ′ + µY

(1)
1 (ρ, ϕ, µ)− 3

2
∂Y

(1)
1

∂µ
+ 3µY (1)

2 (ρ, ϕ, µ)− 3
2
∂Y

(1)
2

∂µ
(1.6)

with the boundary conditions

Y
(2)
1 (R,ϕ, µ) = −2U (2)

ϕ

∣∣∣
S
, µ > 0, Y

(2)
1 (∞, ϕ, µ) = 0. (1.7)

Here Y (1)
1 (ρ, ϕ, µ) and Y

(1)
2 (ρ, ϕ, µ) are the distribution functions from the problem of rarefied gas thermal creep

along a solid flat surface [8]:

Y
(1)
1 (ρ, ϕ, µ) =

∞∫
0

a(η, ϕ)F (η, µ) exp
(
− x

η

)
dη, x = ρ−R; (1.8)

Y
(1)
2 (ρ, ϕ, µ) = k

∞∫
0

exp
(
− x

η

)
δ(η − µ) dη,

(1.9)

F (η, µ) =
1√
π
ηP

1
η − µ

+ exp (η2)λ(η)δ(η − µ), λ(z) = 1 +
1√
π
z

∞∫
−∞

exp (−µ2)
µ− z

dµ;

a(η, ϕ) = η(η −Q1) exp (−η2)X(−η)k/(2|λ+(η)|2), λ±(η) = λ(η)±
√
π iη exp (−η2),

(1.10)

X(z) =
1
z

exp

(
1
π

∞∫
0

θ(τ)− π
τ − z

dτ

)
, θ(τ)− π = −π

2
− arctg

λ(τ)√
πτ exp (−τ2)

,

λ(z) is the Cercignani dispersion function, Px−1 is the distribution in terms of the principal integral value in
integration x−1, δ(x) is the Dirac delta-function, θ(τ) is the single-valued regular branch of the argument of the
function λ+(τ), satisfying the condition θ(0) = 0.

Therefore, the problem is reduced to the solution of Eq. (1.6) with the boundary conditions (1.7).
2. Allowance for the Interfacial Curvature Influence on the Thermal Creep Coefficient. The

solution of (1.6) is sought in the form

Y
(2)
1 (ρ, ϕ, µ) =

∞∫
0

ψ(η, ϕ, µ) exp
(
− x

η

)
dη. (2.1)

By substituting (1.8), (1.9), and (2.1) in (1.6), we obtain an inhomogeneous characteristic equation(
1− µ

η

)
ψ(η, ϕ, µ) =

1√
π

∞∫
−∞

ψ(η, ϕ, µ′) exp (−µ′2) dµ′

− 1√
π
µ

∞∫
−∞

µ′ψ(η, ϕ, µ′) exp (−µ′2) dµ′ + Z(η, ϕ, µ); (2.2)

Z(η, ϕ, µ) = µa(η, ϕ)F (η, µ)− 3
2
a(η, ϕ)

∂F

∂µ
+ 3µkδ(η − µ)− 3k

2
∂

∂µ
δ(η − µ). (2.3)

By multiplying (2.2) by exp (−µ2) and integrating over µ from −∞ to ∞, we find
∞∫
−∞

µψ(η, ϕ, µ) exp (−µ2) dµ = −η
∞∫
−∞

Z(η, ϕ, µ) exp (−µ2) dµ.

726



Taking into account that the value of the last integral equals zero [4], we write (2.2) in the following form:

(η − µ)ψ(η, ϕ, µ) = ηm(η, ϕ)/
√
π + ηZ(η, ϕ, µ); (2.4)

m(η, ϕ) =

∞∫
−∞

ψ(η, ϕ, µ) exp (−µ2) dµ. (2.5)

The general solution of Eq. (2.4) in the space of generalized functions has the form [10]

ψ(η, ϕ, µ) = ηP/(η − µ)(m(η, ϕ)/
√
π + Z(η, ϕ, µ)) + g(η, ϕ)δ(η − µ). (2.6)

The explicit form of the function g(η, ϕ) is found by substituting (2.6) into (2.5):

g(η, ϕ) =

(
m(η, ϕ)λ(η)− η

∞∫
−∞

P
1

η − µ
Z(η, ϕ, µ) exp (−µ2) dµ

)
exp (η2).

It was shown in [4] that
∞∫
−∞

P
1

η − µ
µF (η, µ) exp (−µ2) dµ = −1,

∞∫
−∞

P
1

η − µ

(
F (η, µ)

)′
µ

exp (−µ2) dµ = −1,

∞∫
−∞

P
1

η − µ
µδ(η − µ) exp (−µ2) dµ = 2 exp (−η2)

(
η2 − 1

2

)
,

∞∫
−∞

P
1

η − µ

(
δ(η − µ)

)′
µ

exp (−µ2) dµ = 2 exp (−η2)
(
η2 − 1

2

)
.

Hence, with allowance for (2.3), we have
∞∫
−∞

P
1

η − µ
Z(η, ϕ, µ) exp (−µ2) dµ =

1
2
a(η, ϕ) + 3k exp (−η2)

(
η2 − 1

2

)
.

Thus,

ψ(η, ϕ, µ) = ηP/(η − µ)[m(η, ϕ)/
√
π + Z(η, ϕ, µ)]

+ [m(η, ϕ) exp (η2)λ(η)− ηa(η, ϕ) exp (η2)/2− 3kη(η2 − 1/2)]δ(η − µ). (2.7)

The solution of (2.1) automatically satisfies the boundary condition (1.7) at infinity. By substituting (2.7)
into (2.1) and allowing for the boundary condition (1.7) at the cylindrical surface, we obtain a singular integral
equation with a kernel of the Cauchy type [11]

−2U (2)
ϕ

∣∣∣
S

=
1√
π

∞∫
0

ηm(η, ϕ)
η − µ

dη +

∞∫
0

ηZ(η, ϕ, µ)
dη

η − µ

+m(µ, ϕ) exp (µ2)λ(µ)− µa(µ, ϕ) exp (µ2)/2− 3kµ(µ2 − 1/2), µ > 0. (2.8)

It was shown in [4] that
∞∫

0

ηP
1

η − µ
a(η, ϕ)F (η, µ) dη =

(
µY

(1)
1 (R,ϕ, µ)

)′
µ
,

∞∫
0

ηP
1

η − µ

(
a(η, ϕ)F (η, µ)

)′
µ
dη =

1
2

(
µY

(1)
1 (R,ϕ, µ)

)′′
µµ
,
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∞∫
0

ηP
1

η − µ
δ(η − µ) dη = 1,

∞∫
0

ηP
1

η − µ

(
δ(η − µ)

)′
µ
dη = 0.

Then, taking into consideration that Y (1)
1 (R,ϕ, η) = (η2 +Q2)k [8], we find

∞∫
0

ηZ(η, ϕ, µ)
dη

η − µ
=
(

3µ3 +Q2µ−
3
2
µ
)
k.

Here Qn are the Loyalka integrals [5]:

Qn =
2√
π

∞∫
0

tn+1 exp (−t2) dt
X(−t)

.

With allowance for the results obtained, we write (2.8) in the following form:

f(µ, ϕ) = m(µ, ϕ) exp (µ2)λ(µ) +
1√
π

∞∫
0

ηm(η, ϕ)
η − µ

dη, µ > 0; (2.9)

f(µ, ϕ) = −2U (2)
ϕ |S −Q2µ+ a(η, ϕ) exp (η2)/2. (2.10)

Let us introduce an auxiliary function

M(z, ϕ) =
1

2πi

∞∫
0

ηm(η, ϕ)
η − z

dη.

Allowing for the boundary values of the functions M(z, ϕ) and λ(z) on the upper and lower flanks of cuts ([0,∞)
and (−∞,+∞), respectively), (2.9) is reduced to a half-space boundary-value Riemann problem [11]

M+(µ, ϕ)λ+(µ)−M−(µ, ϕ)λ−(µ) = µf(µ, ϕ) exp (−µ2), µ > 0. (2.11)

The coefficient of the boundary-value problem (2.11) coincides with the coefficient of the boundary-value
problem on gas creep along a solid flat surface [8]. With allowance for this, (2.11) is reduced to the discontinuity
problem [11]

M+(µ, ϕ)X+(µ)−M−(µ, ϕ)X−(µ) = µf(µ, ϕ) exp (−µ2)X−(µ)/λ−(µ), µ > 0,

which has a solution vanishing at infinity when the following condition [8] is fulfilled:

2√
π

∞∫
0

f(t, ϕ)
X(−t)

t exp (−t2) dt = 0. (2.12)

By substituting (2.10) into (2.12), with allowance for (1.10), we obtain

U (2)
ϕ

∣∣∣
S

=
k

2

(
Q1Q2 −

1
2
√
π

∞∫
0

t2(t−Q1)
|λ+(t)|2

exp (−t2) dt

)
.

Since
1√
π

∞∫
0

t2(t−Q1)
|λ+(t)|2

exp (−t2) dt = −3Q3 −Q1Q2, (2.13)

then U
(2)
ϕ |S = 3k(Q3 + Q1Q2)/4. By substituting the values of Loyalka integrals Q1 = −1.01619, Q2 = −1.26663,

Q3 = −1.8207 into the expression obtained [5], we have U (2)
ϕ

∣∣∣
S

= −0.40017k. From this, allowing for (1.1), we find
the velocity of rarefied gas thermal creep along a solid cylindrical surface

Uϕ

∣∣∣
S

= U (1)
ϕ

∣∣∣
S

+R−1U (2)
ϕ

∣∣∣
S

= (0.38332− 0.400 17R−1)k. (2.14)

Taking into account the relation λ = ν(πβ)1/2 between the kinematic viscosity ν of the gas and the mean
free path of gas particles λ and using the conventional method of normalization of physical quantities, we find
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1
R

=
3µg

2pβ1/2R∗
=

3νβ1/2

R∗
=

3√
π

λ

R∗
=

3√
π

Kn.

Converting (2.14) to dimensional quantities, we obtain

Uϕ

∣∣∣
S

= 1.149 95ν (1− 1.7684 Kn)
1
TS

∂T

R∗ ∂ϕ

∣∣∣
S
.

Here R∗ is the dimensional radius of the cylinder and Kn = λ/R∗ is the Knudsen number.
Therefore, in the case of a rarefied gas flow past a solid cylindrical surface, we have βR⊥ = 1.7684.
3. Longitudinal Flow Past a Cylindrical Surface. Let us assume that the temperature gradient far

from the cylindrical surface is directed along its axis. Let us use the notation k1 = (1/TS)∂T/∂z
∣∣∣
S

.

The solution of (1.2) and (1.3) is sought in the following form:

Y (1)(ρ,C) = CzY
(1)
1 (ρ,Cρ) + Cz(C2

ϕ + C2
z − 2)Y (1)

2 (ρ,Cρ), Y (2)(ρ,C) = CzY
(2)
1 (ρ,Cρ). (3.1)

By substituting expansions (3.1) into (1.3), multiplying the resultant expression by Cz exp (−C2
ϕ − C2

z ), and inte-

grating over Cϕ and Cz from −∞ to +∞, we obtain the following equation for the function Y
(2)
1 (ρ, µ):

µ
∂Y

(2)
1

∂ρ
+ Y

(2)
1 (ρ, µ) =

1√
π

∞∫
−∞

Y
(2)
1 (ρ, µ′) exp (−µ′2) dµ′

− µ√
π

∞∫
−∞

µ′Y
(2)
1 (ρ, µ′) exp (−µ′2) dµ′ − 1

2
∂Y

(1)
1

∂µ
+ µY

(1)
2 (ρ, µ)− 1

2
∂Y

(1)
2

∂µ

with the boundary conditions

Y
(2)
1 (R, µ) = −2U (2)

z

∣∣∣
S
, µ > 0, Y

(2)
1 (∞, µ) = 0.

Here

Y
(1)
1 (ρ, µ) =

∞∫
0

a(η)F (η, µ) exp
(
− x

η

)
dη, x = ρ−R,

Y
(1)
2 (ρ, µ) = k1

∞∫
0

exp
(
− x

η

)
δ(η − µ) dη,

a(η) = η(η −Q1) exp (−η2)X(−η)k1/(2|λ+(η)|2), Y
(1)
1 (R, µ) = (µ2 +Q2)k1.

In the case considered, we have

Z(η, µ) = −1
2
a(η)

∂F

∂µ
+ µk1δ(η − µ)− k1

2
∂

∂µ
δ(η − µ),

∞∫
−∞

P
1

η − µ
Z(η, µ) exp (−µ2) dµ =

1
2
a(η) + k1 exp (−η2)

(
η2 − 1

2

)
,

∞∫
0

ηZ(η, µ)
dη

η − µ
= −1

3
µk1,

f(µ) = −2U (2)
z

∣∣∣
S

+ a(µ) exp (µ2)/2 + µ3k1,

U (2)
z

∣∣∣
S

= −k1

2

(
Q3 +

1
2
√
π

∞∫
0

t2(t−Q1)
|λ+(t)|2

exp (−t2) dt
)
.
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Hence, allowing for (1.1) and (2.13), we obtain

U (2)
z

∣∣∣
S

= (Q3 +Q1Q2)k1/4, Uz

∣∣∣
S

= U (1)
z

∣∣∣
S

+R−1U (2)
z

∣∣∣
S

= (0.38332− 0.13339R−1)k1

or, converting to dimensional quantities,

Uz

∣∣∣
S

= 1.149 95ν(1− 0.589495Kn)
1
TS

∂T

∂z

∣∣∣
S
.

Therefore, βR‖ = 0.589495.
Conclusions. In this work, creep velocities of a temperature-inhomogeneous rarefied gas along a solid

cylindrical surface are found by soling the kinetic Boltzmann equation in the Knudsen layer with the collisions
operator in the form of an operator of the ellipsoidal statistical model. The dependences of thermal creep coefficients
on the curvature radius obtained in the approximation linear in terms of the Knudsen number have the same form
as in [12]. In the case of a longitudinal flow past a cylindrical surface, the expressions obtained for the thermal
creep velocity (3.2) coincide with the respective expressions in [12].
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